Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Duplication of the class I cytosolic small heat shock protein gene and potential functional divergence revealed by sequence variations flanking the {alpha}-crystallin domain in the genus Rhododendron (Ericaceae).

Identifieur interne : 003301 ( Main/Exploration ); précédent : 003300; suivant : 003302

Duplication of the class I cytosolic small heat shock protein gene and potential functional divergence revealed by sequence variations flanking the {alpha}-crystallin domain in the genus Rhododendron (Ericaceae).

Auteurs : Pei-Chun Liao [Taïwan] ; Tsan-Piao Lin ; Wei-Chieh Lan ; Jeng-Der Chung ; Shih-Ying Hwang

Source :

RBID : pubmed:19887471

Descripteurs français

English descriptors

Abstract

BACKGROUND AND AIMS

Positive selection in the -crystallin domain (ACD) of the chloroplast small heat shock protein (CPsHSP) gene was found in a previous study and was suggested to be related to the ecological adaptation of Rhododendron species in the subgenus Hymenanthes. Consequently, it was of interest to examine whether gene duplication and subsequent divergence have occurred in other sHSP genes, for example class I cytosolic sHSP genes (CT1sHSPs) in Rhododendron in Taiwan, where many endemic species have evolved as a result of habitat differentiation.

METHODS

A phylogeny of CT1sHSP amino acid sequences was built from Rhododendron, Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Vitis vinifera and other species for elucidation of the phylogenetic relationships among CT1sHSPs. Phylogenies of Rhododendron CT1sHSP nucleotide and amino acid sequences were generated for positive selection and functional divergence analysis, respectively. Positively selected sites and amino acid differences between types of Rhododendron CT1sHSPs were mapped onto the wheat sHSP16.9 protein structure. Average genetic distance (Dxy) and dN/dS ratios between types of Rhododendron CT1sHSP genes were analysed using sliding window analysis. Gene conversion was also assessed between types of Rhododendron CT1sHSPs.

KEY RESULTS

Two types of Rhododendron CT1sHSP were identified. A high level of genetic similarity and diversity within and flanking the ACD, respectively, between types of Rhododendron CT1sHSP were found. Main differences between the two types of Rhododendron CT1sHSPs were: (1) increased hydrophobicity by two positively selected amino acid sites and a seven-amino-acid insertion in the N-terminal arm; and (2) increased structural flexibility and solubility by a seven-amino-acid insertion in the N-terminal arm and one positively selected amino acid site in the C-terminal extension.

CONCLUSIONS

Functional conservation of the ACD of Rhododendron CT1sHSP genes was inferred b


DOI: 10.1093/aob/mcp272
PubMed: 19887471
PubMed Central: PMC2794073


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Duplication of the class I cytosolic small heat shock protein gene and potential functional divergence revealed by sequence variations flanking the {alpha}-crystallin domain in the genus Rhododendron (Ericaceae).</title>
<author>
<name sortKey="Liao, Pei Chun" sort="Liao, Pei Chun" uniqKey="Liao P" first="Pei-Chun" last="Liao">Pei-Chun Liao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pingtung University of Science and Technology, Pingtung 91201, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Life Science, Pingtung University of Science and Technology, Pingtung 91201</wicri:regionArea>
<wicri:noRegion>Pingtung 91201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, Tsan Piao" sort="Lin, Tsan Piao" uniqKey="Lin T" first="Tsan-Piao" last="Lin">Tsan-Piao Lin</name>
</author>
<author>
<name sortKey="Lan, Wei Chieh" sort="Lan, Wei Chieh" uniqKey="Lan W" first="Wei-Chieh" last="Lan">Wei-Chieh Lan</name>
</author>
<author>
<name sortKey="Chung, Jeng Der" sort="Chung, Jeng Der" uniqKey="Chung J" first="Jeng-Der" last="Chung">Jeng-Der Chung</name>
</author>
<author>
<name sortKey="Hwang, Shih Ying" sort="Hwang, Shih Ying" uniqKey="Hwang S" first="Shih-Ying" last="Hwang">Shih-Ying Hwang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19887471</idno>
<idno type="pmid">19887471</idno>
<idno type="doi">10.1093/aob/mcp272</idno>
<idno type="pmc">PMC2794073</idno>
<idno type="wicri:Area/Main/Corpus">003403</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003403</idno>
<idno type="wicri:Area/Main/Curation">003403</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003403</idno>
<idno type="wicri:Area/Main/Exploration">003403</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Duplication of the class I cytosolic small heat shock protein gene and potential functional divergence revealed by sequence variations flanking the {alpha}-crystallin domain in the genus Rhododendron (Ericaceae).</title>
<author>
<name sortKey="Liao, Pei Chun" sort="Liao, Pei Chun" uniqKey="Liao P" first="Pei-Chun" last="Liao">Pei-Chun Liao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pingtung University of Science and Technology, Pingtung 91201, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Life Science, Pingtung University of Science and Technology, Pingtung 91201</wicri:regionArea>
<wicri:noRegion>Pingtung 91201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, Tsan Piao" sort="Lin, Tsan Piao" uniqKey="Lin T" first="Tsan-Piao" last="Lin">Tsan-Piao Lin</name>
</author>
<author>
<name sortKey="Lan, Wei Chieh" sort="Lan, Wei Chieh" uniqKey="Lan W" first="Wei-Chieh" last="Lan">Wei-Chieh Lan</name>
</author>
<author>
<name sortKey="Chung, Jeng Der" sort="Chung, Jeng Der" uniqKey="Chung J" first="Jeng-Der" last="Chung">Jeng-Der Chung</name>
</author>
<author>
<name sortKey="Hwang, Shih Ying" sort="Hwang, Shih Ying" uniqKey="Hwang S" first="Shih-Ying" last="Hwang">Shih-Ying Hwang</name>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Duplication (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Heat-Shock Proteins, Small (chemistry)</term>
<term>Heat-Shock Proteins, Small (genetics)</term>
<term>Heat-Shock Proteins, Small (physiology)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (physiology)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Rhododendron (genetics)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Analysis, Protein (MeSH)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de séquence de protéine (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Duplication de gène (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Petites protéines du choc thermique (composition chimique)</term>
<term>Petites protéines du choc thermique (génétique)</term>
<term>Petites protéines du choc thermique (physiologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (physiologie)</term>
<term>Rhododendron (génétique)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Heat-Shock Proteins, Small</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Heat-Shock Proteins, Small</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Heat-Shock Proteins, Small</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Petites protéines du choc thermique</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Rhododendron</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Petites protéines du choc thermique</term>
<term>Protéines végétales</term>
<term>Rhododendron</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Petites protéines du choc thermique</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Duplication</term>
<term>Genetic Variation</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, Protein</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de séquence de protéine</term>
<term>Données de séquences moléculaires</term>
<term>Duplication de gène</term>
<term>Modèles moléculaires</term>
<term>Phylogenèse</term>
<term>Spécificité d'espèce</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Variation génétique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND AND AIMS</b>
</p>
<p>Positive selection in the -crystallin domain (ACD) of the chloroplast small heat shock protein (CPsHSP) gene was found in a previous study and was suggested to be related to the ecological adaptation of Rhododendron species in the subgenus Hymenanthes. Consequently, it was of interest to examine whether gene duplication and subsequent divergence have occurred in other sHSP genes, for example class I cytosolic sHSP genes (CT1sHSPs) in Rhododendron in Taiwan, where many endemic species have evolved as a result of habitat differentiation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>A phylogeny of CT1sHSP amino acid sequences was built from Rhododendron, Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Vitis vinifera and other species for elucidation of the phylogenetic relationships among CT1sHSPs. Phylogenies of Rhododendron CT1sHSP nucleotide and amino acid sequences were generated for positive selection and functional divergence analysis, respectively. Positively selected sites and amino acid differences between types of Rhododendron CT1sHSPs were mapped onto the wheat sHSP16.9 protein structure. Average genetic distance (Dxy) and dN/dS ratios between types of Rhododendron CT1sHSP genes were analysed using sliding window analysis. Gene conversion was also assessed between types of Rhododendron CT1sHSPs.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY RESULTS</b>
</p>
<p>Two types of Rhododendron CT1sHSP were identified. A high level of genetic similarity and diversity within and flanking the ACD, respectively, between types of Rhododendron CT1sHSP were found. Main differences between the two types of Rhododendron CT1sHSPs were: (1) increased hydrophobicity by two positively selected amino acid sites and a seven-amino-acid insertion in the N-terminal arm; and (2) increased structural flexibility and solubility by a seven-amino-acid insertion in the N-terminal arm and one positively selected amino acid site in the C-terminal extension.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Functional conservation of the ACD of Rhododendron CT1sHSP genes was inferred b</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19887471</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>105</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Duplication of the class I cytosolic small heat shock protein gene and potential functional divergence revealed by sequence variations flanking the {alpha}-crystallin domain in the genus Rhododendron (Ericaceae).</ArticleTitle>
<Pagination>
<MedlinePgn>57-69</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mcp272</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">Positive selection in the -crystallin domain (ACD) of the chloroplast small heat shock protein (CPsHSP) gene was found in a previous study and was suggested to be related to the ecological adaptation of Rhododendron species in the subgenus Hymenanthes. Consequently, it was of interest to examine whether gene duplication and subsequent divergence have occurred in other sHSP genes, for example class I cytosolic sHSP genes (CT1sHSPs) in Rhododendron in Taiwan, where many endemic species have evolved as a result of habitat differentiation.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">A phylogeny of CT1sHSP amino acid sequences was built from Rhododendron, Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Vitis vinifera and other species for elucidation of the phylogenetic relationships among CT1sHSPs. Phylogenies of Rhododendron CT1sHSP nucleotide and amino acid sequences were generated for positive selection and functional divergence analysis, respectively. Positively selected sites and amino acid differences between types of Rhododendron CT1sHSPs were mapped onto the wheat sHSP16.9 protein structure. Average genetic distance (Dxy) and dN/dS ratios between types of Rhododendron CT1sHSP genes were analysed using sliding window analysis. Gene conversion was also assessed between types of Rhododendron CT1sHSPs.</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">Two types of Rhododendron CT1sHSP were identified. A high level of genetic similarity and diversity within and flanking the ACD, respectively, between types of Rhododendron CT1sHSP were found. Main differences between the two types of Rhododendron CT1sHSPs were: (1) increased hydrophobicity by two positively selected amino acid sites and a seven-amino-acid insertion in the N-terminal arm; and (2) increased structural flexibility and solubility by a seven-amino-acid insertion in the N-terminal arm and one positively selected amino acid site in the C-terminal extension.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Functional conservation of the ACD of Rhododendron CT1sHSP genes was inferred b</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liao</LastName>
<ForeName>Pei-Chun</ForeName>
<Initials>PC</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science, Pingtung University of Science and Technology, Pingtung 91201, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Tsan-Piao</ForeName>
<Initials>TP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lan</LastName>
<ForeName>Wei-Chieh</ForeName>
<Initials>WC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chung</LastName>
<ForeName>Jeng-Der</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hwang</LastName>
<ForeName>Shih-Ying</ForeName>
<Initials>SY</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050888">Heat-Shock Proteins, Small</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="Y">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050888" MajorTopicYN="N">Heat-Shock Proteins, Small</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029793" MajorTopicYN="N">Rhododendron</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020539" MajorTopicYN="N">Sequence Analysis, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19887471</ArticleId>
<ArticleId IdType="pii">mcp272</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcp272</ArticleId>
<ArticleId IdType="pmc">PMC2794073</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Apr;151(4):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10101175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 May;155(1):431-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10790415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Funct Genomics. 2003;3(1-4):201-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12836699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2002;36:75-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12429687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):1157-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15654095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3708-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9520431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2001 Oct;23(10):873-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):820-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2000 Dec 1;15(12):496-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1993 Jan;10(1):103-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8450753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jan 15;21(2):260-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Oct;19(10):1752-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12270901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1999 Jan;16(1):127-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10331257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2950-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8159686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):191-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2003 May 25;42(20):2269-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12772159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 Jan;20(1):18-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Soc Gen Physiol Ser. 1994;49:85-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7939906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Apr;22(4):1107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15689528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Aug;137(4):1019-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7982556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 6;283(23):15853-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Jul;158(3):1311-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11454777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 23;444(7118):444-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17122850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Mar;99(3):461-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2008 Dec;275(23):5885-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19021764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2002 Aug 19;1577(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12151089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2008 Summer;13(2):127-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18759000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Dec;8(12):1025-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11702068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12665616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1997 Aug;22(8):314-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9270306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Apr 1;26(7):1628-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9512532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2001 Dec;11(6):673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11682312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2008 Jun;18(3):366-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Dec 12;19(18):2496-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Mar;18(3):500-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11934757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Protein Chem. 2001;59:105-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11868270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Sep;15(9):763-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10498777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jul 2;358(6381):86-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1614539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Jul 10;388(6638):167-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9217155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jan;154(1):459-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10629003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 29;281(52):39943-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17090542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(9):817-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Dec;171(4):2139-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16143609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1989 Sep;6(5):526-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2677599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2007 Jan;42(1):14-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17070712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1980 Dec;16(2):111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7463489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2006 Mar 21;239(2):141-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16242725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Jun;18(6):897-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11371577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Apr;8(2):122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2008 Summer;13(2):183-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18369739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Oct;141(2):785-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8647410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2002 Aug;12(4):393-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12100882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Feb 3;16(3):659-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9034347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 1;277(9):7086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1998 Apr;46(4):409-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9541535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1987 Jan;115(1):207-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3557113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2001 Jul;6(3):225-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11599564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2004 Jul;59(1):121-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15383915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jan;122(1):189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10631262</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Taïwan</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chung, Jeng Der" sort="Chung, Jeng Der" uniqKey="Chung J" first="Jeng-Der" last="Chung">Jeng-Der Chung</name>
<name sortKey="Hwang, Shih Ying" sort="Hwang, Shih Ying" uniqKey="Hwang S" first="Shih-Ying" last="Hwang">Shih-Ying Hwang</name>
<name sortKey="Lan, Wei Chieh" sort="Lan, Wei Chieh" uniqKey="Lan W" first="Wei-Chieh" last="Lan">Wei-Chieh Lan</name>
<name sortKey="Lin, Tsan Piao" sort="Lin, Tsan Piao" uniqKey="Lin T" first="Tsan-Piao" last="Lin">Tsan-Piao Lin</name>
</noCountry>
<country name="Taïwan">
<noRegion>
<name sortKey="Liao, Pei Chun" sort="Liao, Pei Chun" uniqKey="Liao P" first="Pei-Chun" last="Liao">Pei-Chun Liao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003301 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003301 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19887471
   |texte=   Duplication of the class I cytosolic small heat shock protein gene and potential functional divergence revealed by sequence variations flanking the {alpha}-crystallin domain in the genus Rhododendron (Ericaceae).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19887471" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020